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We study the drift of a Brownian particle in a periodically tapered tube, induced by a longitudinal
time-periodic force of amplitude |F| that alternates in sign every half-period. The focus is on the
velocity dependence on the force period, which is usually considered not tractable analytically. For
large |F| we derive an analytical solution that gives the velocity as a function of the amplitude and
the period of the force as well as the geometric parameters of the tube. The solution shows how
the velocity decreases from its maximum value to zero as the force period decreases from infinity
(adiabatic regime) to zero. Our analytical results are in excellent agreement with those obtained from
3D Brownian dynamics simulations. © 2011 American Institute of Physics. [doi:10.1063/1.3647873]

The problem of directed motion under the action of a
time-periodic force, F (t), with zero mean in a macroscop-
ically homogeneous environment is one of the fundamental
problems of nonequilibrium statistical mechanics. The prob-
lem has many different faces. Here we consider a particular
case when a point Brownian particle moves in the environ-
ment that has a periodic microstructure with an asymmetric
elementary cell. (When the cell is symmetric, there is no di-
rected motion since there is no a preferential direction of mo-
tion.) The effective drift velocity of the directed motion is the
difference between the particle displacements during positive
and negative half-periods of the force, �±, divided by the
force period, τ . This velocity, v = (�+ − �−)/τ , is a func-
tion of F (t) and the properties of the environment. We con-
sider a special case when F (t) instantly switches between two
values, ±|F |, every half-period. In this case the velocity de-
pends on the two parameters of the force, its amplitude |F |
and period τ , v = v(|F |, τ ). The directed motion arises only
when the force amplitude is not too small. If the amplitude is
not large enough, the system operates in the linear response
regime, where the displacements �+ and �− are equal in
magnitude, and hence v(|F |, τ ) = 0.

The present Communication focuses on the τ -
dependence of the drift velocity, which is usually considered
not tractable analytically. For the first time, we provide an
analytical solution for v(|F |, τ ) assuming that the force
amplitude is very large. The solution shows that v(|F |, τ )
decreases monotonically with τ from its maximum value
in the adiabatic regime (τ → ∞) to zero as τ → 0. The
solution is obtained for the case when the particle moves in
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a periodically tapered tube schematically shown in Fig. 1,
assuming that the force acts along the tube axis. We show
that the drift velocity factorizes as v(|F |, τ ) = vad (|F |)f (τ ),
where vad (|F |) = v(|F |,∞) is the drift velocity in the adi-
abatic regime and f (τ ) is independent of |F | and increases
monotonically from zero to unity as τ increases from zero
to infinity, Eq. (4). We find that vad (|F |) ∝ |F | at large |F |,
and establish the relation between the ratio vad (|F |)/|F | and
the geometric parameters of the tube, Eq. (1). We derive
a general solution for f (τ ) as an infinite series of Bessel
functions, Eq. (11), which is in excellent agreement with
f (τ ) obtained from 3D Brownian dynamics simulations over
the entire range of τ (Fig. 3). We also find simple expressions
for the asymptotic behaviors of f (τ ), as τ → ∞ and 0,
Eqs. (5) and (7), and suggest a simple approximate formula,
Eq. (8), which describes the variation of f (τ ) from zero to
unity, as τ goes from zero to infinity.

The problem of directed motion under the action of a
time-periodic force with zero mean in a spatially periodic
asymmetric environment has been discussed in numerous
publications, since it arises in many different contexts, rang-
ing from biology to nanotechnology (see review articles1 and
references therein). Periodic asymmetry of the environment
may be due to a periodic asymmetric energy potential, U (x),
U (x + l) = U (x), where x is a coordinate measured along
the force direction, and l is the period. Alternatively, this
can be due to periodic in x variation of the geometric con-
straints, for example, as shown in Fig. 1. One can recast the
varying tube geometry into periodic entropy potential Uent (x)
= −kBT ln[A(x)/Amin], where A(x) is the tube cross-
sectional area at a given value of x, Amin is the minimum
cross-sectional area, kB is the Boltzmann constant, and T is
the absolute temperature. While most publications deal with
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FIG. 1. Schematic representation of a periodically tapered tube. Dashed lines
show the cylindrical tube connecting the openings.

the case of the periodic energy potential, there are a few re-
cent papers in which directed motion in the presence of peri-
odically varying geometric constraints has been studied.2–7

The directed motions induced by the time-periodic force
with zero mean in periodic asymmetric energy and entropy
potentials are similar on condition that the entropy potential
(tube geometry) is a smoothly varying function. The reason
is that the force-dependent mobility of the particle, μ(F ),
has a similar behavior in both cases. The mobility is a non-
monotonic function of F that tends to its value in the absence
of the periodic energy/entropy potential, μ0, as F → ±∞,
having a minimum in-between. In the case of the periodic
energy potential, the asymptotic behavior, μ(±∞) = μ0, fol-
lows from the fact that, at sufficiently large F , the energy |F l|
significantly exceeds the amplitude of the periodic potential,
and the latter can be considered as a negligibly small pertur-
bation as F → ±∞.8 The situation is different in a tube of
smoothly varying geometry. Here collisions with the walls fo-
cus a particle into the cylinder passing through the openings
connecting neighboring compartments. Spending all time in
the cylinder, the particle is unaware of varying tube geometry.
Therefore, the mobility approaches μ0 as F → ±∞.9, 10

When the constraint geometry changes abruptly, the pic-
ture of the particle motion is very different. The reason is that
in such systems mobility μ(F ) is a monotonic function of F .
For the tube shown in Fig. 1, the mobility monotonically in-
creases with F as shown in Fig. 2. In this case μ(F ) → μ0,
as F → +∞, since focusing collisions with the walls keep
the particle in the narrow cylinder connecting the openings
(shown in Fig. 1 by dashed lines). When F → −∞, the pat-
tern of the particle motion is the same as that in a cylindrical
tube of radius R separated into identical compartments by in-
finitely thin periodic partitions with circular openings of ra-
dius a in their centers studied in Refs. 10(a, b), 11, and 12. In
such a tube the particle can be either in the cylinder connect-
ing the openings or in thin layers of thickness |kBT /F | near
the vertical walls. The particle can move in the force direction
only when it is in the cylinder. The probability of finding the
particle in the cylinder is given by the ratio a2/R2 = ν2, since
the marginal distribution of the particle over the tube cross
section is uniform and given by 1/(πR2), independent of F .
As a result, the particle mobility in such a tube approaches
its limiting value μ0ν

2, as F → ±∞. This is just the particle
mobility in the tube shown in Fig. 1, as F → −∞ (Fig. 2).

When the force switches between the two values, |F |
and −|F |, the displacements in the adiabatic regime are
μ(±|F |)|F |τ/2, respectively, and the effective drift velocity
is vad (|F |) = [μ(|F |) − μ(−|F |)]|F |/2. In the cases of a pe-
riodic energy potential and smoothly varying tube geometry,
the difference μ(|F |) − μ(−|F |) is non-monotonic in |F |: it
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FIG. 2. Particle mobilities scaled by μ0 as functions of the driving force for
the tube shown in Fig. 1 with ν = 0.1 and ν = 0.3, ν = a/R, and l = R.
Symbols are μ(F )/μ0 obtained from Brownian dynamics simulations, and
the solid lines are smooth fits of the simulation results. The dashed lines show
the large-F asymptotic values of the mobilities scaled by μ0. The simulation
results were obtained by averaging over 105 trajectories. The time step in the
simulations varied from 2 × 10−6R2/D0 to 1.25 × 10−7R2/D0 depending
on the values of the force and the radii ratio ν. When the increment of the
trajectory crossed the tube wall, only its component parallel to the wall was
accepted, while the component normal to the wall was ignored.
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FIG. 3. Comparison of analytical and numerical results. Solid curves rep-
resent the plots of f (τ ) given in Eq. (11) at ν = 0.1 (upper curve) and
ν = 0.3 (lower curve). The doted curves represent corresponding small-τ
asymptotic behaviors, Eq. (7). The dashed curve represents the plot of f (τ )
in Eq. (8). Symbols are the results obtained from 3D Brownian dynamics
simulations. The insert shows f (τ ) at small τ/trel , where the expressions in
Eqs. (7) and (11) are indistinguishable. The simulation results were obtained
by averaging over 2.5 × 104 trajectories. The time step in the simulations was
8 × 10−8R2/D0 for both values of the radii ratio ν. When the increment of
the trajectory crossed the tube wall, only its component parallel to the wall
was accepted, while the component normal to the wall was ignored.
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vanishes as |F | → 0 and ∞, having a maximum in-between.
As a consequence, vad (|F |) is also non-monotonic in |F |:
the velocity first increases with |F |, reaches a maximum and
then decreases. When the tube geometry changes abruptly,
the difference in the mobilities monotonically increases with
|F |, tending to its maximum value �μmax = μ(∞) − μ(−∞)
= μ0(1 − ν2), as |F | → ∞. As a result, vad (|F |) takes the
form

vad (|F |) = �μmax

2
|F | = μ0(1 − ν2)

2
|F | , |F | → ∞,

(1)

which shows that vad (|F |) becomes unboundedly large as
|F | → ∞. Considered as a function of ν, vad (|F |) increases
monotonically as ν decreases, approaching its maximum
value μ0|F |/2 as ν → 0. This is easy to understand since dur-
ing positive half-period of the force, when the particle moves
forward, its mobility is μ0, while during the negative half-
period, the particle practically does not move.

Now we proceed to the dependence of the effective drift
velocity on the force period. We assume that |F | is large
enough, so that as τ → ∞, v(|F |, τ ) tends to vad (|F |) given
in Eq. (1). Let us suppose that the force period significantly
exceeds the times that characterize the relaxation of the re-
duced probability density of the particle, after the external
force changes its direction. Then most of the positive half-
period of the force, the particle is localized in the cylinder
connecting the openings. When the force changes its direc-
tion from positive to negative, the distribution relaxes to a new
steady state, which is identical to that in the cylindrical tube
with infinitely thin periodic partitions. This distribution re-
laxes again to the one in which the particle is localized in the
cylinder connecting the openings, when the force changes its
direction back from negative to positive.

The two relaxation processes are characterized by the re-
laxation times, t

(+ →−)
rel and t

(− →+)
rel , respectively. It is natural

to assume that time t
(− → +)
rel is of the order of l/(μ0|F |). (Our

simulations support this assumption.) The second relaxation
time can be obtained using the results of Ref. 13. This time is
independent of |F | and given by

t
(+ → −)
rel = a2

4D(1 − ν2)
(ν2 − 1 − lnν2). (2)

Thus, there are two characteristic time scales, one of which is
independent of |F |, t

(+ → −)
rel in Eq. (2), whereas the second is

inversely proportional to |F |, t
(− → +)
rel ∝ 1/|F |, and vanishes

as |F | → ∞.
We will assume that |F | is large enough, so that τ

� t
(− → +)
rel , and the particle displacement during the positive

half-period of the force, �+ = μ0|F |τ/2, is much larger than
l, μ0|F |τ � l. During the negative half-period of the force,
when the particle can be either in the cylinder connecting
the openings or in the thin layers near the vertical walls, its
displacement is given by �− = μ0|F | ∫ τ/2

0 Pcyl(t)dt , where
Pcyl(t) is the probability of finding the particle in the cylinder
at time t , Pcyl(0) = 1. We use the two displacements to find

v(|F |, τ ),

v(|F |, τ ) = �+ − �−
τ

= μ0|F |
2

(
1 − 2

τ

∫ τ/2

0
Pcyl(t)dt

)
.

(3)

It is convenient to write Pcyl(t) in terms of the relaxation func-
tion R(t), that describes the relaxation of Pcyl(t) from unity
at t = 0 to the equilibrium probability of finding the parti-
cle in the cylinder, P

eq

cyl = ν2, as t → ∞. Using the relation
Pcyl(t) = P

eq

cyl + (1 − P
eq

cyl)R(t), we can write Eq. (3) as

v(|F |, τ ) = vad (|F |)f (τ ) , f (τ ) = 1 − (2/τ )
∫ τ/2

0
R(t)dt,

(4)

where vad (|F |) is given in Eq. (1).
The asymptotic behaviors of f (τ ) in the limiting cases

of τ → ∞ and 0 can be readily found. As τ → ∞, f (τ ) in
Eq. (4), takes the form

f (τ ) ≈ 1 − 2trel/τ , τ → ∞, (5)

where trel = t
(+ → −)
rel is the relaxation time defined by (here-

after we omit the superscript)

trel =
∫ ∞

0
R(t)dt =

∫ ∞

0

[
Pcyl(t) − P

eq

cyl

]
dt

/(
1 − P

eq

cyl

)
,

(6)

which is given in Eq. (2). To find the small-τ
asymptotic behavior of f (τ ) we use the relation
R(t) = [Pcyl(t) − P

eq

cyl]/[1 − P
eq

cyl] and the short-time asymp-
totic behavior of Pcyl(t), Pcyl(t) ≈ 1 − (2/a)

√
Dt/π ,

t → 0, which is easy to obtain. This leads to
R(t) ≈ 1 − (2/a)

√
Dt/π/(1 − ν2) , t → 0. Substituting

this into Eq. (4), we find

f (τ ) ≈ 2
√

2Dτ/π/[3a(1 − ν2)] , τ → 0. (7)

Note that the small-τ asymptotic behavior of the effective
drift velocity, v(|F |, τ ) ∝ √

τ , is quite different from the
small-τ asymptotic behavior v(|F |, τ ) ∝ τ 4, obtained for the
case of smoothly varying energy potential.14

Using trel we can obtain a simple formula for f (τ ) by
approximately modeling transitions between mobile (m) and
immobile (im) states of the particle (i.e., in the cylinder and
near the walls, respectively) as a two-state Markov process

m
km−→←−
kim

im, where km = (1 − ν2)/trel and kim = ν2/trel are the

rate constants. This leads to a single-exponential approxima-
tion of the relaxation function, Rexp(t) = exp(−t/trel). Sub-
stituting Rexp(t) into the expression for f (τ ) in Eq. (4) and
carrying out the integration, we arrive at

f (τ ) ≈ fexp(τ ) = 1 − (2trel/τ )(1 − e−τ/(2trel )). (8)

This simple expression describes a monotonic increase of
f (τ ) from zero to unity as τ increases from zero to infinity,
and reduces to the exact result in Eq. (5) as τ → ∞.

Finally, we obtain a rigorous solution for f (τ ) over the
entire range of τ using the eigenfunction expansion of the
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propagator,

g(r, t |r0) = 1

πR2

[
1 +

∞∑
n=1

J0(λnr)J0(λnr0)

J 2
0 (λnR)

e−λ2
nDt

]
, (9)

where Jk(z) is the Bessel function of the first kind of order k,
and λn is the nth positive root of the equation J1(λnR) = 0,
n = 1, 2, . . .. First, we find the probability Pcyl(t)

Pcyl(t) = P
eq

cyl + 4

R2

∞∑
n=1

J 2
1 (λna)

λ2
nJ

2
0 (λnR)

e−λ2
nDt , (10)

and the relaxation function, R(t) = [Pcyl(t) − ν2]/(1 − ν2),
which we substitute into Eq. (4). Carrying out the integration
we arrive at

f (τ ) = 1 − 8

Dτ (R2 − a2)

∞∑
n=1

J 2
1 (λna)

λ4
nJ

2
0 (λnR)

(1 − e−λ2
nDτ/2).

.(11)

This is the exact solution for f (τ ) on condition that μ0|F |τ
� l, so that the inequality τ � t

(−→+)
rel is fulfilled. Neglecting

the exponential terms, we obtain the expression for f (τ ) in
Eq. (5) with trel given by

trel = 4

(R2 − a2)D

∞∑
n=1

J 2
1 (λna)

λ4
nJ

2
0 (λnR)

, (12)

which is an alternative representation of the relaxation time.
The two expressions for trel , Eqs. (2) and (12), are exact re-
sults obtained by means of different formalisms. The eigen-
function expansion of the propagator leads to the result in
Eq. (12), whereas the result in Eq. (2) can be derived using
the Laplace transform of the propagator.13

Our analytical results are compared with those obtained
from 3D Brownian dynamics simulations in Fig. 3, where we
show the plots of f (τ ) given in Eqs. (8) and (11), as well as
the small-τ asymptotic behavior in Eq. (7) as functions of the
ratio τ/trel . The expression in Eq. (8) is a universal function
of τ/trel in the sense that it is independent of ν, whereas the
expressions in Eqs. (7) and (11) depend on ν. Symbols in
Fig. 3 show the values of f (τ ) found from Brownian dynam-
ics simulations at |F | = 105kBT /l, for tubes with l/R = 1,
and ν = 0.1 , 0.3. The force |F | = 105kBT /l is large in
the sense that the mobility difference is very close to its
asymptotic value �μmax = μ0(1 − ν2) in both tubes (Fig. 2).
Therefore, we obtained f (τ ) as the ratio of the effective drift
velocity found from simulations to vad (|F |) given in Eq. (1).
The comparison shows excellent agreement between the
theoretical predictions and numerical results for both tubes.

To summarize, our analysis of directed motion of a par-
ticle induced by a time-periodic force of amplitude |F | with
zero mean, in a periodically tapered tube (Fig. 1) is based on
two observations. First, the particle mobility in such a tube
monotonically increases with the driving force (Fig. 2). Sec-
ond, the relaxation time t

(+ →−)
rel = trel is independent of |F |,

Eq. (2), whereas the relaxation time t
(− →+)
rel is proportional

to |F |−1 and becomes vanishingly small as |F | → ∞. Us-
ing these two facts, we derive an analytical solution for the
effective drift velocity at large |F | that describes the veloc-
ity dependence on the amplitude and period of the force and
the geometric parameters of the tube. Our analytical results
are corroborated by the results of Brownian dynamics simu-
lations (Fig. 3).
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